Dendritic BDNF synthesis is required for late-phase spine maturation and recovery of cortical responses following sensory deprivation.
نویسندگان
چکیده
Sensory experience in early postnatal life shapes neuronal connections in the brain. Here we report that the local synthesis of brain-derived neurotrophic factor (BDNF) in dendrites plays an important role in this process. We found that dendritic spines of layer 2/3 pyramidal neurons of the visual cortex in mutant mice lacking dendritic Bdnf mRNA and thus local BDNF synthesis were normal at 3 weeks of age, but thinner, longer, and more closely spaced (morphological features of immaturity) at 4 months of age than in wild-type (WT) littermates. Layer 2/3 of the visual cortex in these mutant animals also had fewer GABAergic presynaptic terminals at both ages. The overall size and shape of dendritic arbors were, however, similar in mutant and WT mice at both ages. By using optical imaging of intrinsic signals and single-unit recordings, we found that mutant animals failed to recover cortical responsiveness following monocular deprivation (MD) during the critical period, although they displayed normally the competitive loss of responsiveness to an eye briefly deprived of vision. Furthermore, MD still induced a loss of responsiveness to the closed eye in adult mutant mice, but not in adult WT mice. These results indicate that dendritic BDNF synthesis is required for spine pruning, late-phase spine maturation, and recovery of cortical responsiveness following sensory deprivation. They also suggest that maturation of dendritic spines is required for the maintenance of cortical responsiveness following sensory deprivation in adulthood.
منابع مشابه
Synaptic activity controls dendritic spine morphology by modulating eEF2-dependent BDNF synthesis.
Activity-dependent changes in synaptic structure and spine morphology are required for learning and memory, and depend on protein translation. We show that the kinase for eukaryotic elongation factor 2 (eEF2K) regulates dendritic spine stability and synaptic structure by modulating activity-dependent dendritic BDNF synthesis. Specifically RNAi knockdown of eEF2K reduces dendritic spine stabilit...
متن کاملInteraction of sensory experience and age in spatial memory performances
During a critical period of postnatal age sensory experience has a profound effect on maturation of visual cortical wiring. Electrophysiological evidence is indicating a substantial effect of visual deprivation on the visual cortical response properties. In this study we evaluated effect of light deprivation during a limited time of postnatal age on two aspects of spatial (working and reference...
متن کاملInteraction of sensory experience and age in spatial memory performances
During a critical period of postnatal age sensory experience has a profound effect on maturation of visual cortical wiring. Electrophysiological evidence is indicating a substantial effect of visual deprivation on the visual cortical response properties. In this study we evaluated effect of light deprivation during a limited time of postnatal age on two aspects of spatial (working and reference...
متن کاملThe BDNF effects on dendritic spines of mature hippocampal neurons depend on neuronal activity
The fine tuning of neural networks during development and learning relies upon both functional and structural plastic processes. Changes in the number as well as in the size and shape of dendritic spines are associated to long-term activity-dependent synaptic plasticity. However, the molecular mechanisms translating functional into structural changes are still largely unknown. In this context, ...
متن کاملNeurotrophin and Wnt signaling cooperatively regulate dendritic spine formation☆
Dendritic spines are major sites of excitatory synaptic transmission and changes in their numbers and morphology have been associated with neurodevelopmental and neurodegenerative disorders. Brain-derived Neurotrophic Factor (BDNF) is a secreted growth factor that influences hippocampal, striatal and neocortical pyramidal neuron dendritic spine density. However, the mechanisms by which BDNF reg...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 32 14 شماره
صفحات -
تاریخ انتشار 2012